Restriction Theorems for Orthonormal Functions, Strichartz Inequalities, and Uniform Sobolev Estimates Rupert L. Frank and Julien Sabin
نویسنده
چکیده
We generalize the theorems of Stein–Tomas and Strichartz about surface restrictions of Fourier transforms to systems of orthonormal functions with an optimal dependence on the number of functions. We deduce the corresponding Strichartz bounds for solutions to Schrödinger equations up to the endpoint, thereby solving an open problem of Frank, Lewin, Lieb and Seiringer. We also prove uniform Sobolev estimates in Schatten spaces, extending the results of Kenig, Ruiz, and Sogge. We finally provide applications of these results to a Limiting Absorption Principle in Schatten spaces, to the well-posedness of the Hartree equation in Schatten spaces, to Lieb–Thirring bounds for eigenvalues of Schrödinger operators with complex potentials, and to Schatten properties of the scattering matrix.
منابع مشابه
Strichartz Inequality for Orthonormal Functions
We prove a Strichartz inequality for a system of orthonormal functions, with an optimal behavior of the constant in the limit of a large number of functions. The estimate generalizes the usual Strichartz inequality, in the same fashion as the Lieb-Thirring inequality generalizes the Sobolev inequality. As an application, we consider the Schrödinger equation in a time-dependent potential and we ...
متن کاملHardy-sobolev-maz’ya Inequalities for Arbitrary Domains
1.1. Hardy-Sobolev-Maz’ya inequalities. Hardy inequalities and Sobolev inequalities bound the size of a function, measured by a (possibly weighted) L norm, in terms of its smoothness, measured by an integral of its gradient. Maz’ya [22] proved that for functions on the half-space R+ = {x ∈ R : xN > 0}, N ≥ 3, which vanish on the boundary, the sharp version of the Hardy inequality can be combine...
متن کاملThe Stein-tomas Inequality in Trace Ideals
The goal of this review is to explain some recent results [5] regarding generalizations of the Stein-Tomas (and Strichartz) inequalities to the context of trace ideals (Schatten spaces).
متن کاملMaximizers for the Strichartz Inequalities and the Sobolev-strichartz Inequalities for the Schrödinger Equation
In this paper, we first show that there exists a maximizer for the non-endpoint Strichartz inequalities for the Schrödinger equation in all dimensions based on the recent linear profile decomposition results. We then present a new proof of the linear profile decomposition for the Schröindger equation with initial data in the homogeneous Sobolev space; as a consequence, there exists a maximizer ...
متن کاملSharp Constants in Several Inequalities on the Heisenberg Group Rupert L. Frank and Elliott H. Lieb
Abstract. We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Lapla...
متن کامل